Kafka 消费者
# 5.1 Kafka 消费方式
➢ pull(拉)模 式:
consumer 采用从 broker 中主动拉取数据。 Kafka 采用这种方式。
➢ push(推)模式:
Kafka 没有采用这种方式,因为由 broker 决定消息发送速率,很难适应所有消费者的消费速率。例如推送的速度是 50m/s, Consumer1、Consumer2 就来不及处理消息。
pull 模式不足之处是,如 果 Kafka 没有数据,消费者可能会陷入循环中,一直返回空数据。
# 5.2 Kafka 消费者工作流程
# 5.2.1 消费者总体工作流程
# 5.2.2 消费者组原理
Consumer Group(CG):消费者组,由多个 consumer 组成。形成一个消费者组的条件,是所有消费者的 groupid 相同。
- 消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费。
- 消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
# 消费者组初始化流程
coordinator:辅助实现消费者组的初始化和分区的分配。
coordinator 节点选择 = groupid 的 hashcode 值 % 50( __consumer_offsets 的分区数量)
例如: groupid 的 hashcode 值 = 1,1% 50 = 1,那么
__consumer_offsets
主题的 1 号分区,在哪个 broker 上,就选择这个节点的 coordinator 作为这个消费者组的老大。消费者组下的所有的消费者提交 offset 的时候就往这个分区去提交 offset。
# 5.2.3 消费者重要参数
参数名称 | 描述 |
---|---|
bootstrap.servers | 向 Kafka 集群建立初始连接用到的 host/port 列表。 |
key.deserializer 和 value.deserializer | 指定接收消息的 key 和 value 的反序列化类型。一定要写全 类名。 |
group.id | 标记消费者所属的消费者组。 |
enable.auto.commit | 默认值为 true,消费者会自动周期性地向服务器提交偏移量。 |
auto.commit.interval.ms | 如果设置了 enable.auto.commit 的值为 true, 则该值定义了消费者偏移量向 Kafka 提交的频率,默认 5s。 |
auto.offset.reset | 当 Kafka 中没有初始偏移量或当前偏移量在服务器中不存在 (如,数据被删除了),该如何处理? earliest:自动重置偏 移量到最早的偏移量。 latest:默认,自动重置偏移量为最 新的偏移量。 none:如果消费组原来的(previous)偏移量 不存在,则向消费者抛异常。 anything:向消费者抛异常。 |
offsets.topic.num.partitions | __consumer_offsets 的分区数,默认是 50 个分区。 |
heartbeat.interval.ms | Kafka 消费者和 coordinator 之间的心跳时间,默认 3s。 该条目的值必须小于 session.timeout.ms ,也不应该高于 session.timeout.ms 的 1/3。 |
session.timeout.ms | Kafka 消费者和 coordinator 之间连接超时时间,默认 45s。 超过该值,该消费者被移除,消费者组执行再平衡。 |
max.poll.interval.ms | 消费者处理消息的最大时长,默认是 5 分钟。超过该值,该 消费者被移除,消费者组执行再平衡。 |
fetch.min.bytes | 默认 1 个字节。消费者获取服务器端一批消息最小的字节 数。 |
fetch.max.wait.ms | 默认 500ms。如果没有从服务器端获取到一批数据的最小字 节数。该时间到,仍然会返回数据。 |
fetch.max.bytes | 默认 Default: 52428800(50 m)。消费者获取服务器端一批 消息最大的字节数。如果服务器端一批次的数据大于该值 (50m)仍然可以拉取回来这批数据,因此,这不是一个绝对最大值。一批次的大小受 message.max.bytes (broker config)or max.message.bytes (topic config)影响。 |
max.poll.records | 一次 poll 拉取数据返回消息的最大条数,默认是 500 条。 |
# 5.3 消费者 API
# 5.3.1 独立消费者案例(订阅主题)
创建一个独立消费者,消费 first 主题中数据。
注意:在消费者 API 代码中必须配置消费者组 id。命令行启动消费者不填写消费者组 id 会被自动填写随机的消费者组 id。
2)实现步骤
public class CustomConsumer {
public static void main(String[] args) {
// 0 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test5");
// 设置分区分配策略
properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG,"org.apache.kafka.clients.consumer.StickyAssignor");
// 1 创建一个消费者 "", "hello"
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
kafkaConsumer.commitAsync();
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# 5.3.2 独立消费者案例(订阅分区)
1)需求:创建一个独立消费者,消费 first 主题 0 号分区的数据。
2)实现步骤
public class CustomConsumerPartition {
public static void main(String[] args) {
// 0 配置
Properties properties = new Properties();
// 连接
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");
// 1 创建一个消费者
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题对应的分区
ArrayList<TopicPartition> topicPartitions = new ArrayList<>();
topicPartitions.add(new TopicPartition("first",0));
kafkaConsumer.assign(topicPartitions);
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# 5.3.3 消费者组案例
1)需求:测试同一个主题的分区数据,只能由一个消费者组中的一个消费。
public class CustomConsumer1 {
public static void main(String[] args) {
// 0 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test5");
// 设置分区分配策略
properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG,"org.apache.kafka.clients.consumer.StickyAssignor");
// 1 创建一个消费者 "", "hello"
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# 5.4 生产经验——分区的分配以及再平衡
1、一个 consumer group 中有多个 consumer 组成,一个 topic 有多个 partition 组成,现在的问题是,到底由哪个 consumer 来消费哪个 partition 的数据。
2、Kafka 有四种主流的分区分配策略: Range、RoundRobin、Sticky、CooperativeSticky。 可以通过配置参数partition.assignment.strategy,修改分区的分配策略。默认策略是 Range + CooperativeSticky。Kafka 可以同时使用 多个分区分配策略。
参数名称 | 描述 |
---|---|
heartbeat.interval.ms | Kafka 消费者和 coordinator 之间的心跳时间,默认 3s。 该条目的值必须小于 session.timeout.ms,也不应该高于 session.timeout.ms 的 1/3。 |
session.timeout.ms | Kafka 消费者和 coordinator 之间连接超时时间,默认 45s。超过该值,该消费者被移除,消费者组执行再平衡。 |
max.poll.interval.ms | 消费者处理消息的最大时长,默认是 5 分钟。超过该值,该消费者被移除,消费者组执行再平衡。 |
partition.assignment.strategy | 消 费 者 分 区 分 配 策 略 , 默 认 策 略 是 Range + CooperativeSticky。Kafka 可以同时使用多个分区分配策略。 可 以 选 择 的 策 略 包 括 : Range 、 RoundRobin 、 Sticky 、 CooperativeSticky |
# 5.4.1 Range 以及再平衡
# 1)Range 分区策略原理
Range 是对每个 topic 而言的。
首先对同一个 topic 里面的分区按照序号进行排序,并对消费者按照字母顺序进行排序。
假如现在有 7 个分区,3 个消费者,排序后的分区将会 是 0,1,2,3,4,5,6;消费者排序完之后将会是 C0,C1,C2。
通过 partitions 数/consumer 数来决定每个消费者应该消费几个分区。如果除不尽,那么前面几个消费者将会多消费 1 个分区。
例如,7/3 = 2 余 1 ,除不尽,那么消费者 C0 便会多消费 1 个分区。 8/3=2 余 2,除不尽,那么 C0 和 C1 分别多消费一个。
注意:如果只是针对 1 个 topic 而言,C0 消费者多消费 1 个分区影响不是很大。但是如果有 N 多个 topic,那么针对每个 topic,消费者 C0 都将多消费 1 个分区,topic 越多,C0 消 费的分区会比其他消费者明显多消费 N 个分区。 容易产生数据倾斜!
# 2)Range 分区分配策略案例
(1)修改主题 first 为 7 个分区。
[andanyoung@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --alter --topic first --partitions 7
注意:分区数可以增加,但是不能减少。
(2)复制 CustomConsumer 类,创建 CustomConsumer2。这样可以由三个消费者 CustomConsumer、CustomConsumer1、CustomConsumer2 组成消费者组,组名都为“test”, 同时启动 3 个消费者。
# 3)Range 分区分配再平衡案例
(1)停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)。
1 号消费者:消费到 3、4 号分区数据。
2 号消费者:消费到 5、6 号分区数据。
0 号消费者的任务会整体被分配到 1 号消费者或者 2 号消费者。
说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 消费者 执行。
(2)再次重新发送消息观看结果(45s 以后)。
1 号消费者:消费到 0、1、2、3 号分区数据。
2 号消费者:消费到 4、5、6 号分区数据。
说明:消费者 0 已经被踢出消费者组,所以重新按照 range 方式分配。
# 5.4.2 RoundRobin 以及再平衡
RoundRobin 针对集群中所有 Topic 而言。
RoundRobin 轮询分区策略,是把所有的 partition 和所有的 consumer 都列出来,然后按照 hashcode 进行排序,最后通过轮询算法来分配 partition 给到各个消费者。
# 5.4.3 Sticky 以及再平衡
粘性分区定义:可以理解为分配的结果带有“粘性的”。即在执行一次新的分配之前, 考虑上一次分配的结果,尽量少的调整分配的变动,可以节省大量的开销。
粘性分区是 Kafka 从 0.11.x 版本开始引入这种分配策略,首先会尽量均衡的放置分区 到消费者上面,在出现同一消费者组内消费者出现问题的时候,会尽量保持原有分配的分区不变化。
# 5.5 offset 位移
# 5.5.1 offset 的默认维护位置
__consumer_offsets 主题里面采用 key 和 value 的方式存储数据。key 是 group.id+topic+ 分区号,value 就是当前 offset 的值。每隔一段时间,kafka 内部会对这个 topic 进行 compact,也就是每个 group.id+topic+分区号就保留最新数据。
# 1)消费 offset 案例
(0)思想:__consumer_offsets 为 Kafka 中的 topic,那就可以通过消费者进行消费。
(1)在配置文件 config/consumer.properties 中添加配置 exclude.internal.topics=false
,默认是 true,表示不能消费系统主题。为了查看该系统主题数据,所以该参数修改为 false。
(2)采用命令行方式,创建一个新的 topic。
[andanyoung@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --create --topic andanyoung --partitions 2 --replication-factor 2
(3)启动生产者往 andanyoung 生产数据。
[andanyoung@hadoop102 kafka]$ bin/kafka-console-producer.sh --topic andanyoung --bootstrap-server hadoop102:9092
(4)启动消费者消费 andanyoung 数据。
[andanyoung@hadoop104 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic andanyoung --group test
注意:指定消费者组名称,更好观察数据存储位置(key 是 group.id+topic+分区号)。
(5)查看消费者消费主题__consumer_offsets。
andanyoung@hadoop102 kafka]$ bin/kafka-console-consumer.sh --topic __consumer_offsets --bootstrap-server hadoop102:9092 --consumer.config config/consumer.properties --formatter "kafka.coordinator.group.GroupMetadataManager\$OffsetsMessageFormatter" --from-beginning
[offset,andanyoung,1]::OffsetAndMetadata(offset=7, leaderEpoch=Optional[0], metadata=, commitTimestamp=1622442520203, expireTimestamp=None)
[offset,andanyoung,0]::OffsetAndMetadata(offset=8, leaderEpoch=Optional[0], metadata=, commitTimestamp=1622442520203, expireTimestamp=None)
2
3
4
# 5.5.2 自动提交 offset
为了使我们能够专注于自己的业务逻辑,Kafka 提供了自动提交 offset 的功能。
自动提交 offset 的相关参数:
enable.auto.commit
:是否开启自动提交 offset 功能,默认是 trueauto.commit.interval.ms
: 自动提交 offset 的时间间隔,默认是 5s
参数名称 | 描述 |
---|---|
enable.auto.commit | 默认值为 true,消费者会自动周期性地向服务器提交偏移量。 |
auto.commit.interval.ms | 如果设置了 enable.auto.commit 的值为 true, 则该值定义了消费者偏移量向 Kafka 提交的频率,默认 5s。 |
# 1)消费者自动提交 offset
public class CustomConsumerAutoOffset {
public static void main(String[] args) {
// 0 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");
// 自动提交
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,true);
// 提交时间间隔
properties.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG,1000);
// 1 创建一个消费者 "", "hello"
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# 5.5.3 手动提交 offset
虽然自动提交 offset 十分简单便利,但由于其是基于时间提交的,开发人员难以把握 offset 提交的时机。因此 Kafka 还提供了手动提交 offset 的 API。
手动提交 offset 的方法有两种:分别是commitSync(同步提交) 和commitAsync(异步提交)。两者的相 点是,都会将本次提交的一批数据最高的偏移量提交;不同点是,同步提交阻塞当前线程,一直到提交成功,并且会自动失败重试(由不可控因素导致,也会出现提交失败);而异步提交则没有失败重试机制,故有可能提交失败。
commitSync(同步提交):必须等待 offset 提交完毕,再去消费下一批数据。
commitAsync(异步提交) :发送完提交 offset 请求后,就开始消费下一批数据了。
# 1)同步提交 offset
由于同步提交 offset 有失败重试机制,故更加可靠,但是由于一直等待提交结果,提交的效率比较低。以下为同步提交 offset 的示例。
public class CustomConsumerByHandSync {
public static void main(String[] args) {
// 0 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");
// 手动提交
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);
// 1 创建一个消费者 "", "hello"
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
// 手动提交offset
kafkaConsumer.commitSync();
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# 2)异步提交 offset
虽然同步提交 offset 更可靠一些,但是由于其会阻塞当前线程,直到提交成功。因此吞吐量会受到很大的影响。因此更多的情况下,会选用异步提交 offset 的方式。 以下为异步提交 offset 的示例:
public class CustomConsumerByHandSync {
public static void main(String[] args) {
// 0 配置
Properties properties = new Properties();
// 连接 bootstrap.servers
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 配置消费者组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");
// 手动提交
properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,false);
// 1 创建一个消费者 "", "hello"
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题 first
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
// 异步提交 offset
kafkaConsumer.commitAsync();
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# 5.5.4 指定 Offset 消费
auto.offset.reset = earliest | latest | none 默认是 latest。
当 Kafka 中没有初始偏移量(消费者组第一次消费)或服务器上不再存在当前偏移量时(例如该数据已被删除),该怎么办?
- (1)earliest:自动将偏移量重置为最早的偏移量,--from-beginning。
- (2)latest(默认值):自动将偏移量重置为最新偏移量
- (3)none:如果未找到消费者组的先前偏移量,则向消费者抛出异常。
- (4)任意指定 offset 位移开始消费
public class CustomConsumerSeek {
public static void main(String[] args) {
// 0 配置信息
Properties properties = new Properties();
// 连接
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test3");
// 1 创建消费者
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 指定位置进行消费
Set<TopicPartition> assignment = kafkaConsumer.assignment();
// 保证分区分配方案已经制定完毕
while (assignment.size() == 0){
kafkaConsumer.poll(Duration.ofSeconds(1));
assignment = kafkaConsumer.assignment();
}
// 指定消费的offset
for (TopicPartition topicPartition : assignment) {
kafkaConsumer.seek(topicPartition,600);
}
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
注意:每次执行完,需要修改消费者组名;
# 5.5.5 指定时间消费
需求:在生产环境中,会遇到最近消费的几个小时数据异常,想重新按照时间消费。 例如要求按照时间消费前一天的数据,怎么处理?
操作步骤:
public class CustomConsumerSeekTime {
public static void main(String[] args) {
// 0 配置信息
Properties properties = new Properties();
// 连接
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");
// 反序列化
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
// 组id
properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test3");
// 1 创建消费者
KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
// 2 订阅主题
ArrayList<String> topics = new ArrayList<>();
topics.add("first");
kafkaConsumer.subscribe(topics);
// 指定位置进行消费
Set<TopicPartition> assignment = kafkaConsumer.assignment();
// 保证分区分配方案已经制定完毕
while (assignment.size() == 0){
kafkaConsumer.poll(Duration.ofSeconds(1));
assignment = kafkaConsumer.assignment();
}
// 希望把时间转换为对应的offset
HashMap<TopicPartition, Long> topicPartitionLongHashMap = new HashMap<>();
// 封装对应集合
for (TopicPartition topicPartition : assignment) {
topicPartitionLongHashMap.put(topicPartition,System.currentTimeMillis() - 1 * 24 * 3600 * 1000);
}
Map<TopicPartition, OffsetAndTimestamp> topicPartitionOffsetAndTimestampMap = kafkaConsumer.offsetsForTimes(topicPartitionLongHashMap);
// 指定消费的offset
for (TopicPartition topicPartition : assignment) {
OffsetAndTimestamp offsetAndTimestamp = topicPartitionOffsetAndTimestampMap.get(topicPartition);
kafkaConsumer.seek(topicPartition,offsetAndTimestamp.offset());
}
// 3 消费数据
while (true){
ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord);
}
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# 5.5.6 漏消费和重复消费
重复消费:已经消费了数据,但是 offset 没提交。
漏消费:先提交 offset 后消费,有可能会造成数据的漏消费。
(1)场景 1:重复消费。自动提交 offset 引起。
(2)场景 1:漏消费。设置 offset 为手动提交,当 offset 被提交时,数据还在内存中未落盘,此时刚好消费者线 程被 kill 掉,那么 offset 已经提交,但是数据未处理,导致这部分内存中的数据丢失。
# 5.6 生产经验——消费者事务
如果想完成 Consumer 端的精准一次性消费,那么需要Kafka 消费端将消费过程和提交 offset 过程做原子绑定。此时我们需要将 Kafka 的 offset 保存到支持事务的自定义介质(比如 MySQL)。这部分知识会在后续项目部分涉及。
# 5.7 生产经验——数据积压(消费者如何提高吞吐量)
1)如果是 Kafka 消费能力不足,则可以考虑增 加 Topic 的分区数,并且同时提升消费组的消费者数量,消费者数 = 分区数。(两者缺一不可)
2)如果是下游的数据处理不及时:提高每批次拉取的数量。批次拉取数据过少(拉取数据/处理时间 < 生产速度), 使处理的数据小于生产的数据,也会造成数据积压。
参数名称 | 描述 |
---|---|
fetch.max.bytes | 默认 Default: 52428800(50 m)。消费者获取服务器端一批消息最大的字节数。如果服务器端一批次的数据大于该值 (50m)仍然可以拉取回来这批数据,因此,这不是一个绝对最大值。一批次的大小受 message.max.bytes (broker config)or max.message.bytes (topic config)影响。 |
ax.poll.records | 一次 poll 拉取数据返回消息的最大条数,默认是 500 条 |
# 第 6 章 Kafka-Eagle 监控
Kafka-Eagle 框架可以监控 Kafka 集群的整体运行情况,在生产环境中经常使用。
- 01
- idea 热部署插件 JRebel 安装及破解,不生效问题解决04-10
- 02
- spark中代码的执行位置(Driver or Executer)12-12
- 03
- 大数据技术之 SparkStreaming12-12