Young's blog Young's blog
首页
Spring
  • 前端文章1

    • JavaScript
  • 学习笔记

    • 《JavaScript教程》
    • 《JavaScript高级程序设计》
    • 《ES6 教程》
    • 《Vue》
    • 《React》
    • 《TypeScript 从零实现 axios》
    • 《Git》
    • TypeScript
    • JS设计模式总结
  • HTML
  • CSS
  • 技术文档
  • GitHub技巧
  • Nodejs
  • 博客搭建
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 友情链接
关于
收藏
  • 分类
  • 标签
  • 归档
GitHub (opens new window)

Young

首页
Spring
  • 前端文章1

    • JavaScript
  • 学习笔记

    • 《JavaScript教程》
    • 《JavaScript高级程序设计》
    • 《ES6 教程》
    • 《Vue》
    • 《React》
    • 《TypeScript 从零实现 axios》
    • 《Git》
    • TypeScript
    • JS设计模式总结
  • HTML
  • CSS
  • 技术文档
  • GitHub技巧
  • Nodejs
  • 博客搭建
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 友情链接
关于
收藏
  • 分类
  • 标签
  • 归档
GitHub (opens new window)
  • Hadoop

  • kafka

    • kafka3.0入门
    • kafka3.0 生产者
      • 3.1 生产者消息发送流程
        • 3.1.1 发送原理
        • 3.1.2 生产者重要参数列表
        • 3.2 异步发送 API
        • 3.2.1 普通异步发送
        • 1)需求:创建 Kafka 生产者,采用异步的方式发送到 Kafka Broker
        • 2)代码编写
        • 3.2.2 带回调函数的异步发送
        • 3.3 同步发送 API
      • 3.4 生产者分区
        • 3.4.1 分区好处
        • 3.4.2 生产者发送消息的分区策略
        • 1)默认的分区器 DefaultPartitioner
        • 2)案例一
        • 3)案例二
        • 3.4.3 自定义分区器
        • 1)需求
        • 2)实现步骤
      • 3.5 生产经验——生产者如何提高吞吐量
      • 3.6 生产经验——数据可靠性
        • 1)ack 应答原理
        • 3.7 生产经验——数据去重
        • 3.7.1 数据传递语义
        • 3.7.2 幂等性
        • 1)幂等性原理
        • 2)如何使用幂等性
      • 3.7.3 生产者事务
        • 1)Kafka 事务原理
      • 3.8 生产经验——数据有序
      • 3.9 生产经验——数据乱序
    • kafka3.0 broker
    • Kafka 消费者
    • Kafka-Kraft 模式
    • Kafka 整体流程
    • Kafka 幂等性和事务
    • Kafka 外部系统集成 Springboot
    • Kafka生产调优手册
  • Flume

  • hive

  • scala

  • spark

  • 大数据
  • kafka
andanyang
2023-09-20
目录

kafka3.0 生产者

# 第 3 章 Kafka 生产者

# 3.1 生产者消息发送流程

# 3.1.1 发送原理

在消息发送的过程中,涉及到了两个线程——main 线程和 Sender 线程。在 main 线程 中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator, Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker。

发送流程\

# 3.1.2 生产者重要参数列表

参数名称 描述
bootstrap.servers 生产者连接集群所需的 broker 地 址清单 。 例 如 hadoop102:9092,hadoop103:9092,hadoop104:9092,可以设置 1 个或者多个,中间用逗号隔开。注意这里并非需要所有的 broker 地址,因为生产者从给定的 broker 里查找到其他 broker 信息。
key.serializer 和 value.serializer 指定发送消息的 key 和 value 的序列化类型。一定要写 全类名。
buffer.memory RecordAccumulator 缓冲区总大小,默认 32m。
batch.size 缓冲区一批数据最大值,默认 16k。适当增加该值,可 以提高吞吐量,但是如果该值设置太大,会导致数据 传输延迟增加。
linger.ms 如果数据迟迟未达到 batch.size,sender 等待 linger.time 之后就会发送数据。单位 ms,默认值是 0ms,表示没有延迟。生产环境建议该值大小为 5-100ms 之间。
acks 0:生产者发送过来的数据,不需要等数据落盘应答。 1:生产者发送过来的数据,Leader 收到数据后应答。 -1(all):生产者发送过来的数据,Leader+和 isr 队列里面的所有节点收齐数据后应答。默认值是-1,-1 和 all 是等价的。
max.in.flight.requests.per.connection 允许最多没有返回 ack 的次数,默认为 5,开启幂等性要保证该值是 1-5 的数字。
retries 当消息发送出现错误的时候,系统会重发消息。retries 表示重试次数。默认是 int 最大值,2147483647。 如果设置了重试,还想保证消息的有序性,需要设置 MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=1 否则在重试此失败消息的时候,其他的消息可能发送成功了。
retry.backoff.ms 两次重试之间的时间间隔,默认是 100ms。
enable.idempotence 是否开启幂等性,默认 true,开启幂等性。
compression.type 生产者发送的所有数据的压缩方式。默认是 none,也就是不压缩。 支持压缩类型:none、gzip、snappy、lz4 和 zstd。

# 3.2 异步发送 API

# 3.2.1 普通异步发送

# 1)需求:创建 Kafka 生产者,采用异步的方式发送到 Kafka Broker

异步发送流程

# 2)代码编写

(1)创建工程 kafka

(2)导入依赖

		<dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>3.0.0</version>
        </dependency>
1
2
3
4
5

(3)创建包名:com.andanyoung.kafka.producer

(4)编写不带回调函数的 API 代码

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

public class CustomProducer {

    public static void main(String[] args) {

        // 0 配置
        Properties properties = new Properties();

        // 连接集群 bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");

        // 指定对应的key和value的序列化类型 key.serializer
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 1 创建kafka生产者对象
        // "" hello
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        // 2 发送数据
        for (int i = 0; i < 5; i++) {
            kafkaProducer.send(new ProducerRecord<>("first","andanyoung"+i));
        }

        // 3 关闭资源
        kafkaProducer.close();
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

# 3.2.2 带回调函数的异步发送

回调函数会在 producer 收到 ack 时调用,为异步调用,该方法有两个参数,分别是元数据信息(RecordMetadata)和异常信息(Exception),如果 Exception 为 null,说明消息发送成功,如果 Exception 不为 null,说明消息发送失败。

注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试

public class CustomProducerCallback {

    public static void main(String[] args) throws InterruptedException {

        // 0 配置
        Properties properties = new Properties();

        // 连接集群 bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");

        // 指定对应的key和value的序列化类型 key.serializer
//        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 1 创建kafka生产者对象
        // "" hello
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        // 2 发送数据
        for (int i = 0; i < 500; i++) {
            kafkaProducer.send(new ProducerRecord<>("first", "andanyoung" + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata metadata, Exception exception) {

                    if (exception == null){
                        System.out.println("主题: "+metadata.topic() + " 分区: "+ metadata.partition());
                    }
                }
            });

            Thread.sleep(2);
        }

        // 3 关闭资源
        kafkaProducer.close();
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

# 3.3 同步发送 API

只需在异步发送的基础上,再调用一下 get()方法即可。

public class CustomProducerSync {

    public static void main(String[] args) throws ExecutionException, InterruptedException {

        // 0 配置
        Properties properties = new Properties();

        // 连接集群 bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");

        // 指定对应的key和value的序列化类型 key.serializer
//        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 1 创建kafka生产者对象
        // "" hello
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        // 2 发送数据
        for (int i = 0; i < 5; i++) {
            kafkaProducer.send(new ProducerRecord<>("first","andanyoung"+i)).get();
        }

        // 3 关闭资源
        kafkaProducer.close();
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

# 3.4 生产者分区

# 3.4.1 分区好处

(1)便于合理使用存储资源,每个 Partition 在一个 Broker 上存储,可以把海量的数据按照分区切割成一块一块数据存储在多台 Broker 上。合理控制分区的任务,可以实现负载均衡的效果。

(2)提高并行度,生产者可以以分区为单位发送数据;消费者可以以分区为单位进行消费数据。

Kafka 分区好处

# 3.4.2 生产者发送消息的分区策略

# 1)默认的分区器 DefaultPartitioner

在 IDEA 中 ctrl +n,全局查找 DefaultPartitioner。

/**
* The default partitioning strategy:
* <ul>
* 	<li>If a partition is specified in the record, use it
* 	<li>If no partition is specified but a key is present choose a partition based on a hash of the key
* 	<li>If no partition or key is present choose the sticky partition that changes when the batch is full.
*
* See KIP-480 for details about sticky partitioning.
*/
public class DefaultPartitioner implements Partitioner {
	 … …
}

1
2
3
4
5
6
7
8
9
10
11
12
13

Kafka 原则

# 2)案例一

将数据发往指定 partition 的情况下,例如,将所有数据发往分区 1 中。

public class CustomProducerCallbackPartitions {

    public static void main(String[] args) throws InterruptedException {

        // 0 配置
        Properties properties = new Properties();

        // 连接集群 bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");

        // 指定对应的key和value的序列化类型 key.serializer
//        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 1 创建kafka生产者对象
        // "" hello
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        // 2 发送数据
        for (int i = 0; i < 5; i++) {
            kafkaProducer.send(new ProducerRecord<>("first", 1,"","hello" + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata metadata, Exception exception) {

                    if (exception == null){
                        System.out.println("主题: "+metadata.topic() + " 分区: "+ metadata.partition());
                    }
                }
            });

            Thread.sleep(2);
        }

        // 3 关闭资源
        kafkaProducer.close();
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

# 3)案例二

没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值。

public class CustomProducerCallback {

    public static void main(String[] args) throws InterruptedException {

        // 0 配置
        Properties properties = new Properties();

        // 连接集群 bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");

        // 指定对应的key和value的序列化类型 key.serializer
//        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 1 创建kafka生产者对象
        // "" hello
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        // 2 发送数据
        for (int i = 0; i < 500; i++) {
            kafkaProducer.send(new ProducerRecord<>("first", "andanyoung" + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata metadata, Exception exception) {

                    if (exception == null){
                        System.out.println("主题: "+metadata.topic() + " 分区: "+ metadata.partition());
                    }
                }
            });

            Thread.sleep(2);
        }

        // 3 关闭资源
        kafkaProducer.close();
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

# 3.4.3 自定义分区器

如果研发人员可以根据企业需求,自己重新实现分区器。

# 1)需求

例如我们实现一个分区器实现,发送过来的数据中如果包含 andanyoung,就发往 0 号分区, 不包含 andanyoung,就发往 1 号分区。

# 2)实现步骤

(1)定义类实现 Partitioner 接口。

(2)重写 partition()方法。

public class MyPartitioner implements Partitioner {
    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {

        // 获取数据 andanyoung  hello
        String msgValues = value.toString();

        int partition;

        if (msgValues.contains("andanyoung")){
            partition = 0;
        }else {
            partition = 1;
        }

        return partition;
    }

    @Override
    public void close() {

    }

    @Override
    public void configure(Map<String, ?> configs) {

    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

(3)使用分区器的方法,在生产者的配置中添加分区器参数。


public class CustomProducerCallbackPartitions {

    public static void main(String[] args) throws InterruptedException {

        // 0 配置
        Properties properties = new Properties();

        // 连接集群 bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");

        // 指定对应的key和value的序列化类型 key.serializer
//        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 关联自定义分区器
        properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.andanyoung.kafka.producer.MyPartitioner");

        // 1 创建kafka生产者对象
        // "" hello
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        // 2 发送数据
        for (int i = 0; i < 5; i++) {
            kafkaProducer.send(new ProducerRecord<>("first", 1,"","hello" + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata metadata, Exception exception) {

                    if (exception == null){
                        System.out.println("主题: "+metadata.topic() + " 分区: "+ metadata.partition());
                    }
                }
            });

            Thread.sleep(2);
        }

        // 3 关闭资源
        kafkaProducer.close();
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

# 3.5 生产经验——生产者如何提高吞吐量

  • batch.size:批次大小,默认 16k
  • linger.ms:等待时间,修改为 5-100ms
  • compression.type:压缩 snappy
  • RecordAccumulator:缓冲区大小,修改为 64m
public class CustomProducerParameters {

    public static void main(String[] args) {

        // 0 配置
        Properties properties = new Properties();

        // 连接kafka集群
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");

        // 序列化
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 缓冲区大小
        properties.put(ProducerConfig.BUFFER_MEMORY_CONFIG,33554432);

        // 批次大小
        properties.put(ProducerConfig.BATCH_SIZE_CONFIG,16384);

        // linger.ms
        properties.put(ProducerConfig.LINGER_MS_CONFIG, 1);

        // 压缩
        properties.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"snappy");


        // 1 创建生产者
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        // 2 发送数据
        for (int i = 0; i < 5; i++) {
            kafkaProducer.send(new ProducerRecord<>("first","andanyoung"+i));
        }

        // 3 关闭资源
        kafkaProducer.close();
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

# 3.6 生产经验——数据可靠性

# 1)ack 应答原理

ACK应答级别

ACK应答级别

可靠性总结:

  • acks=0,生产者发送过来数据就不管了,可靠性差,效率高;
  • acks=1,生产者发送过来数据 Leader 应答,可靠性中等,效率中等;
  • acks=-1,生产者发送过来数据 Leader 和 ISR 队列里面所有 Follwer 应答,可靠性高,效率低;

在生产环境中,acks=0 很少使用;acks=1,一般用于传输普通日志,允许丢个别数据;acks=-1,一般用于传输和钱相关的数据, 对可靠性要求比较高的场景。

数据重复分析:

acks: -1(all):生产者发送过来的数据,Leader 和 ISR 队列里面的所有节点收齐数据后应答。

数据重复分析

2)代码配置

public class CustomProducerAcks {

    public static void main(String[] args) {

        // 0 配置
        Properties properties = new Properties();

        // 连接集群 bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");

        // 指定对应的key和value的序列化类型 key.serializer
//        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // acks
        properties.put(ProducerConfig.ACKS_CONFIG,"1");

        // 重试次数
        properties.put(ProducerConfig.RETRIES_CONFIG,3);

        // 1 创建kafka生产者对象
        // "" hello
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        // 2 发送数据
        for (int i = 0; i < 5; i++) {
            kafkaProducer.send(new ProducerRecord<>("first","andanyoung"+i));
        }

        // 3 关闭资源
        kafkaProducer.close();
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

# 3.7 生产经验——数据去重

# 3.7.1 数据传递语义

  • 至少一次(At Least Once)= ACK 级别设置为-1 + 分区副本大于等于 2 + ISR 里应答的最小副本数量大于等于 2
  • 最多一次(At Most Once)= ACK 级别设置为 0
  • 精确一次(Exactly Once):对于一些非常重要的信息,比如和钱相关的数据,要求数据既不能重复也不丢失。

总结:

At Least Once 可以保证数据不丢失,但是不能保证数据不重复;

At Most Once 可以保证数据不重复,但是不能保证数据不丢失。

Kafka 0.11 版本以后,引入了一项重大特性:幂等性和事务。

# 3.7.2 幂等性

# 1)幂等性原理

幂等性就是指 Producer 不论向 Broker 发送多少次重复数据,Broker 端都只会持久化一条,保证了不重复。

精确一次(Exactly Once) = 幂等性 + 至少一次( ack=-1 + 分区副本数>=2 + ISR 最小副本数量>=2) 。

重复数据的判断标准:具有相同主键<PID, Partition, SeqNumber>的消息提交时,Broker 只会持久化一条。其中 PID 是 Kafka 每次重启都会分配一个新的;Partition 表示分区号;发往同一 Partition 的消息会附带 Sequence Number 是单调自增的。 所以幂等性只能保证的是在单分区单会话内不重复。

幂等性原理

# 2)如何使用幂等性

开启参数 enable.idempotence 默认为 true,false 关闭。

# 3.7.3 生产者事务

# 1)Kafka 事务原理

说明:开启事务,必须开启幂等性。

Kafka 事务原理

2)Kafka 的事务一共有如下 5 个 API

// 1 初始化事务
void initTransactions();

// 2 开启事务
void beginTransaction() throws ProducerFencedException;

// 3 在事务内提交已经消费的偏移量(主要用于消费者)
void sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets,String consumerGroupId) throws ProducerFencedException;

// 4 提交事务
void commitTransaction() throws ProducerFencedException;

// 5 放弃事务(类似于回滚事务的操作)
void abortTransaction() throws ProducerFencedException;
1
2
3
4
5
6
7
8
9
10
11
12
13
14

3)单个 Producer,使用事务保证消息的仅一次发送

public class CustomProducerTranactions {

    public static void main(String[] args) {

        // 0 配置
        Properties properties = new Properties();

        // 连接集群 bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092,hadoop103:9092");

        // 指定对应的key和value的序列化类型 key.serializer
//        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());

        // 指定事务id
        properties.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG, "tranactional_id_01");

        // 1 创建kafka生产者对象 事务 id 任意起名
        // "" hello
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);

        kafkaProducer.initTransactions();

        kafkaProducer.beginTransaction();

        try {
            // 2 发送数据
            for (int i = 0; i < 5; i++) {
                kafkaProducer.send(new ProducerRecord<>("first", "andanyoung" + i));
            }

            int i = 1 / 0;

            kafkaProducer.commitTransaction();
        } catch (Exception e) {
            kafkaProducer.abortTransaction();
        } finally {
            // 3 关闭资源
            kafkaProducer.close();
        }
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

# 3.8 生产经验——数据有序

生产经验——数据有序

# 3.9 生产经验——数据乱序

1)kafka 在 1.x 版本之前保证数据单分区有序,条件如下:

max.in.flight.requests.per.connection=1(不需要考虑是否开启幂等性)。

2)kafka 在 1.x 及以后版本保证数据单分区有序,条件如下:

(1)未开启幂等性

max.in.flight.requests.per.connection 需要设置为 1。

(2)开启幂等性

max.in.flight.requests.per.connection 需要设置小于等于 5。

原因说明:因为在 kafka1.x 以后,启用幂等后,kafka 服务端会缓存 producer 发来的最近 5 个 request 的元数据, 故无论如何,都可以保证最近 5 个 request 的数据都是有序的。

生产经验——数据乱序

max.in.flight.requests.per.connection: 该参数指定了生产者在收到服务器响应之前可以发送多少个消息。它的值越高,就会占用越多的内存,不过也会提升吞吐量。把它设为 1 可以保证消息是按照发送的顺序写入服务器的,即使发生了重试。

编辑 (opens new window)
上次更新: 2024/04/19, 08:52:45
kafka3.0入门
kafka3.0 broker

← kafka3.0入门 kafka3.0 broker→

最近更新
01
idea 热部署插件 JRebel 安装及破解,不生效问题解决
04-10
02
spark中代码的执行位置(Driver or Executer)
12-12
03
大数据技术之 SparkStreaming
12-12
更多文章>
Theme by Vdoing | Copyright © 2019-2024 Young | MIT License
浙ICP备20002744号
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式