Spark 核心编程之 RDD 算子(2)
# 6. RDD 序列化
# 6.1 闭包检查
从计算的角度,算子以外的代码都是在 Driver 端执行, 算子里面的代码都是在 Executor 端执行。那么在 scala 的函数式编程中,就会导致算子内经常会用到算子外的数据,这样就形成了闭包的效果,如果使用的算子外的数据无法序列化,就意味着无法传值给 Executor 端执行,就会发生错误,所以需要在执行任务计算前,检测闭包内的对象是否可以进行序列化,这个操作我们称之为闭包检测。Scala2.12 版本后闭包编译方式发生了改
# 6.2 序列化方法和属性
从计算的角度, 算子以外的代码都是在 Driver 端执行, 算子里面的代码都是在 Executor 端执行,看如下代码:
object Spark01_RDD_Serial {
def main(args: Array[String]): Unit = {
val sparConf = new SparkConf().setMaster("local").setAppName("WordCount")
val sc = new SparkContext(sparConf)
val rdd: RDD[String] = sc.makeRDD(Array("hello world", "hello spark", "hive", "haddoop"))
val search = new Search("h")
//search.getMatch1(rdd).collect().foreach(println)
search.getMatch2(rdd).collect().foreach(println)
sc.stop()
}
// 查询对象
// 类的构造参数其实是类的属性, 构造参数需要进行闭包检测,其实就等同于类进行闭包检测
class Search(query:String){
def isMatch(s: String): Boolean = {
s.contains(this.query)
}
// 函数序列化案例
def getMatch1 (rdd: RDD[String]): RDD[String] = {
rdd.filter(isMatch)
}
// 属性序列化案例
def getMatch2(rdd: RDD[String]): RDD[String] = {
val s = query
rdd.filter(x => x.contains(s))
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# 6.3 Kryo 序列化框架
参考地址: https://github.com/EsotericSoftware/kryo
Java 的序列化能够序列化任何的类。但是比较重(字节多),序列化后,对象的提交也比较大。Spark 出于性能的考虑,Spark2.0 开始支持另外一种 Kryo 序列化机制。Kryo 速度 是 Serializable 的 10 倍。当 RDD 在 Shuffle 数据的时候,简单数据类型、数组和字符串类型已经在 Spark 内部使用 Kryo 来序列化。 注意:即使使用 Kryo 序列化,也要继承 Serializable 接口。
object serializable_Kryo {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf()
.setAppName("SerDemo")
.setMaster("local[*]")
// 替换默认的序列化机制
.set("spark.serializer",
"org.apache.spark.serializer.KryoSerializer")
// 注册需要使用 kryo 序列化的自定义类
.registerKryoClasses(Array(classOf[Searcher]))
val sc = new SparkContext(conf)
val rdd: RDD[String] = sc.makeRDD(Array("hello world", "hello spark",
"spark", "hahah"), 2)
val searcher = new Searcher("hello")
val result: RDD[String] = searcher.getMatchedRDD1(rdd)
result.collect.foreach(println)
}
}
case class Searcher(val query: String) {
def getMatchedRDD1(rdd: RDD[String]) = {
rdd.filter(isMatch)
}
def isMatch(s: String) = {
s.contains(query)
}
def getMatchedRDD2(rdd: RDD[String]) = {
val q = query
rdd.filter(_.contains(q))
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# 7 RDD 依赖关系
# 7.1 RDD 血缘关系
RDD 只支持粗粒度转换,即在大量记录上执行的单个操作。将创建 RDD 的一系列 Lineage (血统)记录下来,以便恢复丢失的分区。RDD 的 Lineage 会记录 RDD 的元数据信息和转换行为,当该 RDD 的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。
val fileRDD: RDD[String] = sc.textFile("input/1.txt")
println(fileRDD.toDebugString)
println("----------------------")
val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" "))
println(wordRDD.toDebugString)
println("----------------------")
val mapRDD: RDD[(String, Int)] = wordRDD.map((_,1))
println(mapRDD.toDebugString)
println("----------------------")
val resultRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)
println(resultRDD.toDebugString)
resultRDD.collect()
2
3
4
5
6
7
8
9
10
11
12
# 7.2 RDD 依赖关系
这里所谓的依赖关系,其实就是两个相邻 RDD 之间的关系
val sc: SparkContext = new SparkContext(conf)
val fileRDD: RDD[String] = sc.textFile("input/1.txt")
println(fileRDD.dependencies)
println("----------------------")
val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" "))
println(wordRDD.dependencies)
println("----------------------")
val mapRDD: RDD[(String, Int)] = wordRDD.map((_,1))
println(mapRDD.dependencies)
println("----------------------")
val resultRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)
println(resultRDD.dependencies)
resultRDD.collect()
2
3
4
5
6
7
8
9
10
11
12
13
# 7.3 RDD 窄依赖
窄依赖表示每一个父(上游)RDD 的 Partition 最多被子(下游)RDD 的一个 Partition 使用, 窄依赖我们形象的比喻为独生子女。
class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd)
# 7.4 RDD 宽依赖
宽依赖表示同一个父(上游)RDD 的 Partition 被多个子(下游)RDD 的 Partition 依赖,会引起 Shuffle,总结:宽依赖我们形象的比喻为多生。
class ShuffleDependency[K: ClassTag, V: ClassTag, C: ClassTag](
@transient private val _rdd: RDD[_ <: Product2[K, V]],
val partitioner: Partitioner,
val serializer: Serializer = SparkEnv.get.serializer,
val keyOrdering: Option[Ordering[K]] = None,
val aggregator: Option[Aggregator[K, V, C]] = None,
val mapSideCombine: Boolean = false)
extends Dependency[Product2[K, V]]
2
3
4
5
6
7
8
# 7.5 RDD 阶段划分
DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方向, 不会闭环。例如,DAG 记录了 RDD 的转换过程和任务的阶段。
# 7.6 RDD 阶段划分源码
try {
// New stage creation may throw an exception if, for example, jobs are run on
a
// HadoopRDD whose underlying HDFS files have been deleted.
finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}
……
private def createResultStage(
rdd: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
jobId: Int,
callSite: CallSite): ResultStage = {
val parents = getOrCreateParentStages(rdd, jobId)
val id = nextStageId.getAndIncrement()
val stage = new ResultStage(id, rdd, func, partitions, parents, jobId, callSite)
stageIdToStage(id) = stage
updateJobIdStageIdMaps(jobId, stage)
stage
}
……
private def getOrCreateParentStages(rdd: RDD[_], firstJobId: Int): List[Stage]
= {
getShuffleDependencies(rdd).map { shuffleDep =>
getOrCreateShuffleMapStage(shuffleDep, firstJobId)
}.toList
}
……
private[scheduler] def getShuffleDependencies(
rdd: RDD[_]): HashSet[ShuffleDependency[_, _, _]] = {
val parents = new HashSet[ShuffleDependency[_, _, _]]
val visited = new HashSet[RDD[_]]
val waitingForVisit = new Stack[RDD[_]]
waitingForVisit.push(rdd)
while (waitingForVisit.nonEmpty) {
val toVisit = waitingForVisit.pop()
if (!visited(toVisit)) {
visited += toVisit
toVisit.dependencies.foreach {
case shuffleDep: ShuffleDependency[_, _, _] =>
parents += shuffleDep
case dependency =>
waitingForVisit.push(dependency.rdd)
}
}
}
parents
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# 7.7 RDD 任务划分
RDD 任务切分中间分为:Application、Job、Stage 和 Task
- Application:初始化一个 SparkContext 即生成一个 Application;
- Job:一个 Action 算子就会生成一个 Job;
- Stage:Stage 等于宽依赖(ShuffleDependency)的个数加 1;
- Task:一个 Stage 阶段中,最后一个 RDD 的分区个数就是 Task 的个数。
注意:Application->Job->Stage->Task 每一层都是 1 对 n 的关系
# 8. RDD 持久化
# 8.1 RDD Cache 缓存
RDD 通过 Cache 或者 Persist 方法将前面的计算结果缓存,默认情况下会把数据以缓存在 JVM 的堆内存中。但是并不是这两个方法被调用时立即缓存,而是触发后面的 action 算子时,该 RDD 将会被缓存在计算节点的内存中,并供后面重用。
// cache 操作会增加血缘关系,不改变原有的血缘关系
println(wordToOneRdd.toDebugString)
// 数据缓存。
wordToOneRdd.cache()
// 可以更改存储级别
//mapRdd.persist(StorageLevel.MEMORY_AND_DISK_2)
2
3
4
5
6
存储级别
object StorageLevel {
val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
val OFF_HEAP = new StorageLevel(true, true, true, false, 1)
2
3
4
5
6
7
8
9
10
11
12
13
缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD 的缓存容错机 制保证了即使缓存丢失也能保证计算的正确执行。通过基于 RDD 的一系列转换,丢失的数据会被重算,由于 RDD 的各个 Partition 是相对独立的,因此只需要计算丢失的部分即可, 并不需要重算全部 Partition。
Spark 会自动对一些 Shuffle 操作的中间数据做持久化操作(比如:reduceByKey)。这样 做的目的是为了当一个节点 Shuffle 失败了避免重新计算整个输入。但是,在实际使用的时 候,如果想重用数据,仍然建议调用 persist 或 cache。
# 8.2 RDD CheckPoint 检查点
所谓的检查点其实就是通过将 RDD 中间结果写入磁盘
由于血缘依赖过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果检查点之后有节点出现问题,可以从检查点开始重做血缘,减少了开销。 对 RDD 进行 checkpoint 操作并不会马上被执行,必须执行 Action 操作才能触发。
// 设置检查点路径
sc.setCheckpointDir("./checkpoint1")
// 创建一个 RDD,读取指定位置文件:hello atguigu atguigu
val lineRdd: RDD[String] = sc.textFile("input/1.txt")
// 业务逻辑
val wordRdd: RDD[String] = lineRdd.flatMap(line => line.split(" "))
val wordToOneRdd: RDD[(String, Long)] = wordRdd.map {
word => {
(word, System.currentTimeMillis())
}
}
// 增加缓存,避免再重新跑一个 job 做 checkpoint
wordToOneRdd.cache()
// 数据检查点:针对 wordToOneRdd 做检查点计算
wordToOneRdd.checkpoint()
// 触发执行逻辑
wordToOneRdd.collect().foreach(println
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# 8.3 缓存和检查点区别
1)Cache 缓存只是将数据保存起来,不切断血缘依赖。Checkpoint 检查点切断血缘依赖。
2)Cache 缓存的数据通常存储在磁盘、内存等地方,可靠性低。Checkpoint 的数据通常存储在 HDFS 等容错、高可用的文件系统,可靠性高。
3)建议对 checkpoint()的 RDD 使用 Cache 缓存,这样 checkpoint 的 job 只需从 Cache 缓存中读取数据即可,否则需要再从头计算一次 RDD。
# 9 RDD 分区器
Spark 目前支持 Hash 分区和 Range 分区,和用户自定义分区。Hash 分区为当前的默认分区。分区器直接决定了 RDD 中分区的个数、RDD 中每条数据经过 Shuffle 后进入哪个分区,进而决定了 Reduce 的个数。
➢ 只有 Key-Value 类型的 RDD 才有分区器,非 Key-Value 类型的 RDD 分区的值是 None
➢ 每个 RDD 的分区 ID 范围:0 ~ (numPartitions - 1),决定这个值是属于那个分区的。
# 9.1 Hash 分区:
对于给定的 key,计算其 hashCode,并除以分区个数取余
class HashPartitioner(partitions: Int) extends Partitioner {
require(partitions >= 0, s"Number of partitions ($partitions) cannot be
negative.")
def numPartitions: Int = partitions
def getPartition(key: Any): Int = key match {
case null => 0
case _ => Utils.nonNegativeMod(key.hashCode, numPartitions)
}
override def equals(other: Any): Boolean = other match {
case h: HashPartitioner =>
h.numPartitions == numPartitions
case _ =>
false
}
override def hashCode: Int = numPartitions
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# 9.2 Range 分区
将一定范围内的数据映射到一个分区中,尽量保证每个分区数据均匀,而 且分区间有序
# 10 RDD 文件读取与保存
Spark 的数据读取及数据保存可以从两个维度来作区分:文件格式以及文件系统。 文件格式分为:text 文件、csv 文件、sequence 文件以及 Object 文件; 文件系统分为:本地文件系统、HDFS、HBASE 以及数据库。
# 10.1 text 文件
// 读取输入文件
val inputRDD: RDD[String] = sc.textFile("input/1.txt")
// 保存数据
inputRDD.saveAsTextFile("output")
2
3
4
# 10.2 sequence 文件
SequenceFile 文件是 Hadoop 用来存储二进制形式的 key-value 对而设计的一种平面文件(Flat File)。在 SparkContext 中,可以调用 sequenceFile[keyClass, valueClass](path)
。
// 保存数据为 SequenceFile
dataRDD.saveAsSequenceFile("output")
// 读取 SequenceFile 文件
sc.sequenceFile[Int,Int]("output").collect().foreach(println)
2
3
4
# 10.3 object 对象文件
对象文件是将对象序列化后保存的文件,采用 Java 的序列化机制。可以通过 objectFile[T: ClassTag](path)
函数接收一个路径,读取对象文件,返回对应的 RDD,也可以通过调用 saveAsObjectFile()实现对对象文件的输出。因为是序列化所以要指定类型。
// 保存数据
dataRDD.saveAsObjectFile("output")
// 读取数据
sc.objectFile[Int]("output").collect().foreach(println
2
3
4
- 01
- idea 热部署插件 JRebel 安装及破解,不生效问题解决04-10
- 02
- spark中代码的执行位置(Driver or Executer)12-12
- 03
- 大数据技术之 SparkStreaming12-12