Spark 运行架构
# 1 运行架构
Spark 框架的核心是一个计算引擎,整体来说,它采用了标准 master-slave 的结构。 如下图所示,它展示了一个 Spark 执行时的基本结构。图形中的 Driver 表示 master, 负责管理整个集群中的作业任务调度。图形中的 Executor 则是 slave,负责实际执行任务。
# 2 核心组件
由上图可以看出,对于 Spark 框架有两个核心组件:
# 2.1 Driver
Spark 驱动器节点,用于执行 Spark 任务中的 main 方法,负责实际代码的执行工作。 Driver 在 Spark 作业执行时主要负责:
➢ 将用户程序转化为作业(job)
➢ 在 Executor 之间调度任务(task)
➢ 跟踪 Executor 的执行情况
➢ 通过 UI 展示查询运行情况
实际上,我们无法准确地描述 Driver 的定义,因为在整个的编程过程中没有看到任何有关 Driver 的字眼。所以简单理解,所谓的 Driver 就是驱使整个应用运行起来的程序,也称之为 Driver 类。
# 2.2 Executor
Spark Executor 是集群中工作节点(Worker)中的一个 JVM 进程,负责在 Spark 作业 中运行具体任务(Task),任务彼此之间相互独立。Spark 应用启动时,Executor 节点被同时启动,并且始终伴随着整个 Spark 应用的生命周期而存在。如果有 Executor 节点发生了 故障或崩溃,Spark 应用也可以继续执行,会将出错节点上的任务调度到其他 Executor 节点 上继续运行。
Executor 有两个核心功能:
➢ 负责运行组成 Spark 应用的任务,并将结果返回给驱动器进程
➢ 它们通过自身的块管理器(Block Manager)为用户程序中要求缓存的 RDD 提供内存 式存储。RDD 是直接缓存在 Executor 进程内的,因此任务可以在运行时充分利用缓存 数据加速运算。
# 2.3 Master & Worker
Spark 集群的独立部署环境中,不需要依赖其他的资源调度框架,自身就实现了资源调 度的功能,所以环境中还有其他两个核心组件:Master 和 Worker,这里的 Master 是一个进程,主要负责资源的调度和分配,并进行集群的监控等职责,类似于 Yarn 环境中的 RM, 而 Worker 呢,也是进程,一个 Worker 运行在集群中的一台服务器上,由 Master 分配资源对数据进行并行的处理和计算,类似于 Yarn 环境中 NM。
# 2.4 ApplicationMaster
Hadoop 用户向 YARN 集群提交应用程序时,提交程序中应该包含 ApplicationMaster,用 于向资源调度器申请执行任务的资源容器 Container,运行用户自己的程序任务 job,监控整个任务的执行,跟踪整个任务的状态,处理任务失败等异常情况。 说的简单点就是,ResourceManager(资源)和 Driver(计算)之间的解耦合靠的就是 ApplicationMaster。
# 3 核心概念
# 3.1 Executor 与 Core
Spark Executor 是集群中运行在工作节点(Worker)中的一个 JVM 进程,是整个集群中 的专门用于计算的节点。在提交应用中,可以提供参数指定计算节点的个数,以及对应的资源。这里的资源一般指的是工作节点 Executor 的内存大小和使用的虚拟 CPU 核(Core)数量。
应用程序相关启动参数如下:
名称 | 说明 |
---|---|
--num-executors | 配置 Executor 的数量 |
--executor-memory | 配置每个 Executor 的内存大小 |
--executor-cores | 配置每个 Executor 的虚拟 CPU core 数量 |
# 3.2 并行度(Parallelism)
在分布式计算框架中一般都是多个任务同时执行,由于任务分布在不同的计算节点进行 计算,所以能够真正地实现多任务并行执行,记住,这里是并行,而不是并发。这里我们将整个集群并行执行任务的数量称之为并行度。那么一个作业到底并行度是多少呢?这个取决于框架的默认配置。应用程序也可以在运行过程中动态修改。
# 3.3 有向无环图(DAG)
大数据计算引擎框架我们根据使用方式的不同一般会分为四类,其中第一类就是 Hadoop 所承载的 MapReduce,它将计算分为两个阶段,分别为 Map 阶段 和 Reduce 阶段。 对于上层应用来说,就不得不想方设法去拆分算法,甚至于不得不在上层应用实现多个 Job 的串联,以完成一个完整的算法,例如迭代计算。 由于这样的弊端,催生了支持 DAG 框 架的产生。因此,支持 DAG 的框架被划分为第二代计算引擎。如 Tez 以及更上层的 Oozie。这里我们不去细究各种 DAG 实现之间的区别,不过对于当时的 Tez 和 Oozie 来 说,大多还是批处理的任务。接下来就是以 Spark 为代表的第三代的计算引擎。第三代计算引擎的特点主要是 Job 内部的 DAG 支持(不跨越 Job),以及实时计算。 这里所谓的有向无环图,并不是真正意义的图形,而是由 Spark 程序直接映射成的数据流的高级抽象模型。简单理解就是将整个程序计算的执行过程用图形表示出来,这样更直观,更便于理解,可以用于表示程序的拓扑结构。
DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方 向,不会闭环。
# 4 提交流程
所谓的提交流程,其实就是我们开发人员根据需求写的应用程序通过 Spark 客户端提交 给 Spark 运行环境执行计算的流程。在不同的部署环境中,这个提交过程基本相同,但是又有细微的区别,我们这里不进行详细的比较,但是因为国内工作中,将 Spark 引用部署到 Yarn 环境中会更多一些,所以本课程中的提交流程是基于 Yarn 环境的。
Spark 应用程序提交到 Yarn 环境中执行的时候,一般会有两种部署执行的方式:Client 和 Cluster。两种模式主要区别在于:Driver 程序的运行节点位置。
# 2.1 Yarn Client 模式
Client 模式将用于监控和调度的 Driver 模块在客户端执行,而不是在 Yarn 中,所以一 般用于测试。
➢ Driver 在任务提交的本地机器上运行
➢ Driver 启动后会和 ResourceManager 通讯申请启动 ApplicationMaster
➢ ResourceManager 分配 container,在合适的 NodeManager 上启动 ApplicationMaster,负责向 ResourceManager 申请 Executor 内存
➢ ResourceManager 接到 ApplicationMaster 的资源申请后会分配 container,然后 ApplicationMaster 在资源分配指定的 NodeManager 上启动 Executor 进程
➢ Executor 进程启动后会向 Driver 反向注册,Executor 全部注册完成后 Driver 开始执行 main 函数
➢ 之后执行到 Action 算子时,触发一个 Job,并根据宽依赖开始划分 stage,每个 stage 生 成对应的 TaskSet,之后将 task 分发到各个 Executor 上执行。
# 2.2 Yarn Cluster 模式
Cluster 模式将用于监控和调度的 Driver 模块启动在 Yarn 集群资源中执行。一般应用于 实际生产环境。
➢ 在 YARN Cluster 模式下,任务提交后会和 ResourceManager 通讯申请启动 ApplicationMaster,
➢ 随后 ResourceManager 分配 container,在合适的 NodeManager 上启动 ApplicationMaster, 此时的 ApplicationMaster 就是 Driver。
➢ Driver 启动后向 ResourceManager 申请 Executor 内存,ResourceManager 接到 ApplicationMaster 的资源申请后会分配 container,然后在合适的 NodeManager 上启动 Executor 进程
➢ Executor 进程启动后会向 Driver 反向注册,Executor 全部注册完成后 Driver 开始执行 main 函数,
➢ 之后执行到 Action 算子时,触发一个 Job,并根据宽依赖开始划分 stage,每个 stage 生成对应的 TaskSet,之后将 task 分发到各个 Executor 上执行。
# Spark——并行度和分区
总结:
这里我们定义 Spark 并发度为 Spark 同时运行的 task 个数,那也就是说 Spark 理论上最大并发等于 executor 个数 * 单个 executor 的 core 个数,假设为 X。
如果我们 task 的并发度达不到 X,那么则浪费了此次为 Spark 程序申请的资源,如果我们 task 的并发度超过 X 很多,那么则可能导致最后写的文件数过多,就容易导致更多的小文件。
在 Spark 中一个 partition 会对应一个 task,因此对于我们来说,理想的情况是:
- 对于非最终输出文件的 stage 来说,尽可能地使 partition 个数大于 X,这样让一部分 task 处于 pending 状态,才可以充分利用 core,避免让某几个 core 长时间处于空闲状态。
- 对于最终输出文件的 stage 来说,要根据最终写的目录文件大小设置合理的并发,这里基本上可以参考 256MB(如果数据量特别大的情况,也可以 1GB)写一个文件,并且保证每个文件的大小相差不大。这样可以避免数据倾斜,同时阻止了大量小文件的产生。
参考 https://blog.csdn.net/weixin_43240150/article/details/129896025 (opens new window)
- 01
- idea 热部署插件 JRebel 安装及破解,不生效问题解决04-10
- 02
- spark中代码的执行位置(Driver or Executer)12-12
- 03
- 大数据技术之 SparkStreaming12-12